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ABSTRACT
New malicious domain campaigns often include large sets of do-
mains registered in bulk and deployed simultaneously. Early identi-
fication of these campaigns can often be accomplished with distance
functions or regular expressions of registered domains, but these
methods may also miss some campaign domains. Other studies
have used time-of-registration features to help identify malicious
domains. This paper explores the use of unsupervised clustering
based on passive DNS records and other inherent network informa-
tion to identify domains that may be part of campaigns but resistant
to detection by domain name or time-of-registration analysis alone.
We have found that using this method, we can achieve up to 2.1x
expansion from a seed of known campaign domains with less than
4% false positives. This could be a useful tool to augment other
methods of identifying malicious domains.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation;

KEYWORDS
Unsupervised machine learning, clustering, malware detection, DB-
SCAN, Agglomerative clustering
ACM Reference Format:
Michael Weber, Jun Wang, and Yuchen Zhou. 2018. Unsupervised Clustering
for Identification of Malicious Domain Campaigns. In Proceedings of 1st
Radical and Experiential Security Workshop (RESEC’18). ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3203422.3203423

1 INTRODUCTION
One class of malicious on-line activity involves registration of do-
mains that take advantage of a topical event. The domain names
often utilize typo-squatting of legitimate domains names or names
that indicate some relevance to legitimate services. Recent exam-
ples of this include malicious campaigns released after the Equifax
data breach or critical software bug updates.

In the case of the Equifax breach, the credit reporting agency
set up a legitimate website, www.equifaxsecurity2017.com, to help
people determine whether they had been affected. This triggered
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one or more malicious campaigns that registered hundreds of do-
mains that appeared similar to the real URL. For example, one such
domain was www.equifaxsecurity3017.com

Detection of such domains can sometimes be achieved through
analysis of the registered domains alone by using regular expres-
sions or distance functions to identify similar domains. This has also
been done with time-of-registration features [2][6][7]. This is par-
ticularly useful when the campaign domains are registered in bulk
at the same time. However, identification by domain name alone
can sometimes be evaded. For example, the attacker can choose to
register domains at different time and/or with sufficiently distinct
domain names, such as www.ewuifactssecutity3017.com. But even
with these variations, we observe that malicious domains belong to
the same campaign still share many common characteristics such
as IP subnet, ASN, DNS TTL, Whois information, and many other
attributes. Based on this observation, this paper discusses the use
of unsupervised clustering of domains using passive DNS records
and other factors to complement existing methods and identify
campaign domains that might not be identified otherwise.

The features used in this study have been determined by passive
DNS records, along with Whois and BGP information to collect
network properties and behaviors related to domains. Clustering
is performed to group domains that have similar characteristics.
By using a few seed domains from known campaigns, additional
domains can be identified by being clustered with the seed domains.
Many of the features used in the clustering have been used in other
studies related to malicious classification [1][4][5]. The contribu-
tion of this paper is to demonstrate the use of such features with
unsupervised clustering in order to expand identification of mali-
cious campaigns based on a small set of known seed domains. We
have seen that a small set of seed domains can be expanded 2.1x
with less than 4% false positives.

2 CLUSTERING MOTIVATION AND
METHODOLOGY

There have been several studies that use supervised methods to clas-
sify domains as malicious or benign [1][4][5] or a combination of
supervised and semi-supervised methods [10]. Rather than directly
classifying domains, this study seeks to group similar domains to-
gether and identify malicious campaign domains that might go
undetected otherwise. These unsupervised methods appear to be
effective in identifying previously undetected domains used in spe-
cific campaigns. This can be a useful tool in blocking these topical
campaigns early when they pose the greatest threat.

https://doi.org/10.1145/3203422.3203423
https://doi.org/10.1145/3203422.3203423




Table 1: Features Generated for Clustering

Feature Source
IP Address Passive DNS
Subnet (/24)a Passive DNS
ASN BGP
Known Malicious IPb Virus Total
Bullet Proof ASN Private company
Rentable ASN Private company
Percentage of Digits in Domain[5] Passive DNS
Number of Unique IPs Seen for Domain[1][5] Passive DNS
Number of Unique TTLs Seen for Domain[5] Passive DNS
Length of Longest Meaningful Substring[5] Passive DNS
Number of Unique Countries Seen[1][5] Passive DNS
Age of Domain[1]c Passive DNS
Registrar of Domain[1] Whois
Daily Similarity of Passive DNS Records[5] Passive DNS
Short-Lived Passive DNS History[5] Passive DNS
Repeated Pattern of Passive DNS Records[5] Passive DNS

aWhile the actual broadcast domain of an individual IP address cannot be determined
from passive DNS, it was observed that many campaign domains use IP addresses that
are from the same /24 address block. For our purposes, the subnet feature is simply
the /24 of each IP address.

bUsing Virus Total as ground truth for malicious domains, when malicious domains are
observed, the associated IP address was collected and used as a feature. Any new
domain associated with this known malicious IP address was used as a feature.

cThe age of a domain was determined by review of historical passive DNS data rather
than relying on the Whois database of this information, since much of the Whois age
data is unavailable.

• K-Means
• Birch
• Ward Hierarchical Clustering with and without connectivity

constraints1 and
• Agglomerative Clustering with and without connectivity

constraints
These algorithms were chosen primarily for their ability to scale

to large sample sets, as well as to provide a broad coverage of
available clustering algorithm types.

Each algorithm has various input parameters. For this study, one
primary input parameter was chosen per algorithm to tune the
performance of the algorithm. For DBSCAN, the input parameter is
EPS (epsilon), the maximum distance for two samples to be consid-
ered part of the same cluster. For Birch, the parameter is the Birch
Threshold, the radius of the sub-cluster obtained by merging a new
sample and the closest sub-cluster. For K-means, Ward Hierarchical
and Agglomerative Clustering, the input parameter is number of
clusters.

While each of the algorithms was selected in part for their scala-
bility, continuous processing of passive DNS data for production
implementation will require high performance. The execution time
for this data set was also evaluated for each algorithm and is docu-
mented in the final results.

1The connectivity constraints were established with a KNN graph with 100 neighbors
for each sample.
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Figure 1: Results of analyzing the data set with DBSCAN for
different input values of the EPS (epsilon) parameter. The
cluster campaign percentage indicates what percentage of
the flagged clusters were malicious. The validation domain
coverage shows what percentage of the total validation do-
mains were found in the flagged clusters.

3 EVALUATION
The algorithms were evaluated based on the maximum cluster
campaign percentage, reflecting the least amount of false positives.
Each algorithm clustered the 100,000 domains, including the 1,541
campaign domains, and identified candidate clusters with at least
10% seed domains.

The results of the various algorithms are shown in Table 2. The
two best performing algorithms were DBSCAN and Agglomerative
Clustering with Connectivity Constraints. To select the best pa-
rameters for each algorithm, we adjusted the input parameter and
compared the coverage and false positives. Figures 1 and 2 show the
results for these two best performing algorithms for various input
parameters. The results for the rest of the algorithms are shown in
Appendix A. The purpose of evaluating multiple algorithms and
input parameters is to help determine the relative effectiveness
of the algorithms on this data set and identify the optimal tuning
parameters for each. The most promising algorithms can then be
further evaluated for detailed understanding of the utility of the
process.

In each graph, the line labeled Cluster_Campaign_Coverage
indicates, in all of the clusters with at least 10% seed domains, what
is the total percentage of campaign seed or campaign verification
domains in those clusters. The ideal value for this metric is 100%,
and any other domain grouped in the candidate cluster is considered
a false positive. Although, as we will see in the further evaluation,
some of the domains that show up as “false positives” may turn out
to be previously unknown campaign domains.

The 1,541 ground truth domains were split into a seed group
of 308 domains and a validation group of 1,233 domains. The line
labeled Validation_Domain_Coverage indicates how many of the
1,233 campaign validation domains have been identified in this
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Figure 2: Results of analyzing the data set with Agglomer-
ative Clustering with connectivity constraints for different
input values of the number of clusters.

process - that is, how many of the 1,233 domains appear in clusters
with at least 10% seed domains. Anything less than 100% could be
considered a false negative. However, since we are constraining
cluster size to keep the results actionable, and since the ground truth
domain set is known to be noisy, we are not expecting or intending
to eliminate false negatives. For the purposes of this study, it is
far more important to identify new malicious campaign domains
with low false positives than it is to identify all malicious domains.
In production, this method is meant to augment existing methods.
However, this value does provide guidance of the validity of the
process. Results with only a small number of identified domains
will not be useful for production purposes.

These results indicate that all of the clustering methods provide
benefit, identifying clusters of domains that are on average at least
80% campaign domains. DBSCAN and Agglomerative Clustering
with connectivity constraints deliver the best results with this data
set identifying clusters with more than 94% campaigns domains.

3.1 Analysis of Results
Looking into the Agglomerative Clustering results with 2,048 clus-
ters, there were 15 clusters that had more than 10% seed campaign
domains. In these 15 clusters, there were 270 domains in total, 54
of which were seed domains and 200 were validation domains. On
average, 94% of the domains in the clusters were seed or validation
campaign domains. Eight clusters were 100% campaign domains.
Of the 16 potential false positives, manual review showed that 4 of
the 16 were known malicious sites, according to Virus Total, and
three of those four shared common word-phrases with the Fake
Update campaign but they had not been included in the original
campaign list. Six were part of the Equifax campaign, although
they were also not on the original ground truth list. Interestingly,
these domains were not previously identified as malicious by Virus
Total, indicating that this method can identify malicious domains
not found by standard methods.

Only six had no appearance of being related to known campaigns
or known to be malicious, making the effective false positive rate
2.22%. Three of the six false positives were in one large cluster with
56 domains related to the Equifax campaign. Two were in a different
Equifax campaign cluster, and one was in an Fake Update campaign
cluster. Looking at the features of domains in these clusters, all six
false positives appeared to have IP addresses and ASNs numeri-
cally close to those in the campaign. This does not appear to be
anything more than coincidence, and is a limitation of the existing
methodology. The standard framework used Euclidean distance
for the features, which for a minority of the features, including
IP address and ASN, is not ideal. A binary matching comparison
should instead be used for those features, and would be part of a
custom distance function. This is left for future work, and would
likely resolve most or all of these false positives.

The top DBSCAN results identified 253 domains across 16 clus-
ters, with 52 seed domains, 193 validation domains, and 8 false
positives. Of those 8 false positives, one domain name shares word-
phrases common to the Fake Update campaign and is known mali-
cious according to Virus Total. One domain name contains word-
phrases related to the Equifax campaign and is not known to Virus
Total. Two more do not appear to be related to any campaign but are
known malicious. Four domain names do not have commonalities
with the campaign domain names but share the exact IP address of
a domain in an Equifax campaign. Of the 8 apparent false positives,
on closer inspection, 6 have strong commonalities with domains
related to campaigns, 1 is unrelated but known malicious, and 1
can be considered a real false positive. The single false positive
has an IP address and ASN that are numerically close to campaign
domains in the cluster. This is likely a numerical coincidence and
not related to malicious activity. A custom distance function could
help prevent this type of domain from clustering with the campaign
domains.

3.2 Cluster Threshold
Selecting the proper threshold of seed domains in a cluster will
minimize the false positives while still yielding usable results. To
determine the proper threshold, the top two algorithms were run
with various threshold values. Figures 3 and 4 show the two top
performing algorithms with different thresholds set for how many
seed campaign domains are found in a cluster for it to be considered
a cluster of campaign domains. As the threshold increases, the per-
centage of campaign domains in the cluster increases, as expected.
However, the total number of validation domains goes down. For
example, when the threshold is set at 30% for DBSCAN, 100% of the
cluster domains are in the validation campaign list, but this only
yields a single domain. Based on this data set, the best threshold for
both algorithms that balances total coverage to cluster percentage
is 10%.

3.3 Minimum Cluster Size
Another variable is what the minimum cluster size should be to bal-
ance usable results and total coverage of the campaign domains. For
example, including all clusters with a single domain may increase
the total number of seed domains found, but it does not provide



Table 2: Evaluation results of the different algorithms with their best input parameter setting. DBSCAN and Agglomerative
Clustering yielded the highest cluster campaign percentage.

Algorithm Best Cluster Validation Total Malicious False Run TimeParameter Campaign % Domain Coverage Domains Domains Positives
DBSCAN 0.01 96.9% 26.3% 253 245 8 87 s
AC w/ Constraints 2,048 94.1% 27.2% 270 254 16 270 s
Birch 0.05 90.7% 29.0% 292 265 27 51 s
AC w/o Constraints 2,048 87.8% 30.1% 319 280 39 670 s
WC w/ Constraints 3,072 84.9% 33.0% 364 309 55 269 s
WC w/o Constraints 3,072 84.9% 33.0% 364 309 55 738 s
K-Means 3,072 83.1% 33.4% 379 315 64 1,465 s
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Figure 3: Results of DBSCAN with different cluster thresh-
old values. A lower threshold value will flag more clusters
and potentially find more total validation domains, but the
clusters will also be more likely to have false positives.

additional usable results. Figure 5 shows the results of different
minimum cluster sizes for Agglomerative Clustering.

Reducing the minimum cluster size does increase the valida-
tion domain coverage, but below a minimum of five, there is little
additional benefit in this data set.

3.4 Expansion
The primary use case for this process is to expand knowledge of
domains being used in malicious campaigns. One way to gauge the
effectiveness of the technique is to evaluate the level of expansion
achieved from the initial seeds. The previous results used a seed set
of 20% of the 1,541 campaign domains. To verify what the expansion
would be for different seeds, various seed sizes ranging from 1%
to 90% were tested to determine their expansion capability. The
smallest seeds showed the greatest expansion, but there appears to
be a minimum threshold below which there is a trade off with cluster
percentage. For this data set, a seed group of 150-300 domains, or
10-20%, provides the greatest expansion while maintaining clusters
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Figure 4: Results of Agglomerative Clustering with different
cluster threshold values.

of 96% malicious domains. The expansion results are shown in table
3.

4 RELATED AND FUTURE WORK
4.1 Detecting malicious domains through DNS
A great deal of work has been done to leverage passive DNS data to
detect malicious domains. Antonakakis et al. [1] developed Notos
to use features of passive DNS records to determine whether a
given domain is malicious. Bilge et al. [5] created EXPOSURE with
a different set of unique features to classify domains. Antonakakis
et al. [4] followed up with Kopis to monitor traffic at the upper
levels of the DNS hierarchy and classify domains. The main differ-
ence between this work and these previous studies is that they are
focused on classification using supervised methods. This work is
testing whether unsupervised clustering methods can be used to
expand the identification of known malicious campaigns. Khalil
et al. [8] built associations among domains based on passive DNS
data and used these associations to identify malicious domains.
While they solely relied on domain-IP resolutions to build associa-
tions, we leverage more information from passive DNS, Whois and
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Figure 5: Results of Agglomerative Clustering with different
minimum cluster size values.

Table 3: Expansion results of using different seed percent-
ages from the original list of 1,541 campaign domains. The
cluster percentage begins to degrade with seeds below 10%,
yielding expansion of 2.1x.

Seed % # Seeds # Found Expansion Cluster%
1% 17 108 6.35x 29%
5% 72 197 2.74x 55%
10% 154 325 2.11x 96%
20% 308 509 1.74x 96%
30% 462 633 1.37x 95%
40% 620 766 1.24x 97%
50% 770 886 1.15x 97%
60% 921 1,046 1.14x 99%
70% 1,079 1,171 1.09x 99%
80% 1,232 1,286 1.04x 99%
90% 1,387 1,422 1.03x 99%
95% 1,469 1,480 1.01x 99%
99% 1,524 1,527 1.00x 99%

BGP, which can be more accurate in profiling the characteristics of
malicious domains.

4.2 Detecting malicious domains through
registration

A number of studies have also explored automated detection of
malicious domains from information available during registration.
Felegyhazi et al. [2] detected malicious domains from registration
information found from DNS zone records. Hao et al. [6] studied the
registration behavior of spammers to identify malicious domains.
Hao et al. [7] developed PREDATOR for early detection of malicious
domains with only time-of-registration features. Liu et al. [9] pro-
posed Woodpecker for automated detection of shadowed domains.

This work seeks to augment those techniques by expanding the
identified domains based on a few seed domains.

4.3 Future Work
Initial analysis indicates that this can be an effective process for
identifying domains that are part of topical campaigns. Based on
this early testing, follow-on work to improve the system should
include further focus on the features used for clustering. Many
additional features are possible, and some of the existing features
may not provide much current value. The current study focused on
expansion of malicious domain campaigns, but future work could
investigate identification of new campaigns, and other types of
malicious domains.

The Euclidean distance function used for this clustering is not
ideal for all features in use. Some of the features, such as percentage
of digits in the domain name, may be best measured by Euclidean
distance to gauge similarity, but others, like IP address, would be
better measured with a matching function. Future work will include
additional testing of different distance functions and a custom dis-
tance function that is appropriate to the final features used.

Finally, Internet scale performance will need to be considered as
part of a further implementation. Although all of the tested algo-
rithms were chosen for scalability, the data set was still a fraction of
normal daily traffic. Some of the algorithms will not naively scale
to the amount of daily passive DNS records seen.

5 CONCLUSION
Malicious campaigns such as the Equifax breach campaigns or the
Fake Update campaigns are particularly insidious because they
attempt to take advantage of topical crises and can affect large
groups people who may not otherwise have been compromised.
Comprehensive identification of these domains is critical for broad
network protection. The analysis in this study of several clustering
algorithms on passive DNS data show that this methodology can
be used to identify a substantial amount of previously unknown
malicious domains from a small amount of seed domains and can
be an effective tool to combat malicious campaigns.
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A ADDITIONAL ALGORITHM RESULTS
The following graphs show the results for the remaining algorithms
tested.
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Figure 6: Results of analyzing the data set with Birch for dif-
ferent input values of the threshold parameter.
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Figure 7: Results of analyzing the data set with K-Means for
different input values of the number of clusters.
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Figure 8: Results of analyzing the data set with Ward Cluster-
ing with connectivity constraints for different input values
of the number of clusters.
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Figure 9: Results of analyzing the data set with Agglomera-
tive Clustering without connectivity constraints for differ-
ent input values of the number of clusters.
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Figure 10: Results of analyzing the data set with Ward Clus-
tering without connectivity constraints for different input
values of the number of clusters.
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